本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{sin(cos(x))} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{sin(cos(x))}\right)}{dx}\\=&({e}^{sin(cos(x))}((cos(cos(x))*-sin(x))ln(e) + \frac{(sin(cos(x)))(0)}{(e)}))\\=&-{e}^{sin(cos(x))}sin(x)cos(cos(x))\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -{e}^{sin(cos(x))}sin(x)cos(cos(x))\right)}{dx}\\=&-({e}^{sin(cos(x))}((cos(cos(x))*-sin(x))ln(e) + \frac{(sin(cos(x)))(0)}{(e)}))sin(x)cos(cos(x)) - {e}^{sin(cos(x))}cos(x)cos(cos(x)) - {e}^{sin(cos(x))}sin(x)*-sin(cos(x))*-sin(x)\\=&{e}^{sin(cos(x))}sin^{2}(x)cos^{2}(cos(x)) - {e}^{sin(cos(x))}cos(x)cos(cos(x)) - {e}^{sin(cos(x))}sin(cos(x))sin^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {e}^{sin(cos(x))}sin^{2}(x)cos^{2}(cos(x)) - {e}^{sin(cos(x))}cos(x)cos(cos(x)) - {e}^{sin(cos(x))}sin(cos(x))sin^{2}(x)\right)}{dx}\\=&({e}^{sin(cos(x))}((cos(cos(x))*-sin(x))ln(e) + \frac{(sin(cos(x)))(0)}{(e)}))sin^{2}(x)cos^{2}(cos(x)) + {e}^{sin(cos(x))}*2sin(x)cos(x)cos^{2}(cos(x)) + {e}^{sin(cos(x))}sin^{2}(x)*-2cos(cos(x))sin(cos(x))*-sin(x) - ({e}^{sin(cos(x))}((cos(cos(x))*-sin(x))ln(e) + \frac{(sin(cos(x)))(0)}{(e)}))cos(x)cos(cos(x)) - {e}^{sin(cos(x))}*-sin(x)cos(cos(x)) - {e}^{sin(cos(x))}cos(x)*-sin(cos(x))*-sin(x) - ({e}^{sin(cos(x))}((cos(cos(x))*-sin(x))ln(e) + \frac{(sin(cos(x)))(0)}{(e)}))sin(cos(x))sin^{2}(x) - {e}^{sin(cos(x))}cos(cos(x))*-sin(x)sin^{2}(x) - {e}^{sin(cos(x))}sin(cos(x))*2sin(x)cos(x)\\=&2{e}^{sin(cos(x))}sin(x)cos(x)cos^{2}(cos(x)) + {e}^{sin(cos(x))}sin(x)cos^{2}(cos(x))cos(x) + 2{e}^{sin(cos(x))}sin(cos(x))sin^{3}(x)cos(cos(x)) - {e}^{sin(cos(x))}sin^{3}(x)cos^{3}(cos(x)) + {e}^{sin(cos(x))}sin(x)cos(cos(x)) - 3{e}^{sin(cos(x))}sin(x)sin(cos(x))cos(x) + {e}^{sin(cos(x))}sin^{3}(x)sin(cos(x))cos(cos(x)) + {e}^{sin(cos(x))}sin^{3}(x)cos(cos(x))\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!