本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{1}{sin(x)} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{sin(x)}\right)}{dx}\\=&\frac{-cos(x)}{sin^{2}(x)}\\=&\frac{-cos(x)}{sin^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-cos(x)}{sin^{2}(x)}\right)}{dx}\\=&\frac{--2cos(x)cos(x)}{sin^{3}(x)} - \frac{-sin(x)}{sin^{2}(x)}\\=&\frac{2cos^{2}(x)}{sin^{3}(x)} + \frac{1}{sin(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2cos^{2}(x)}{sin^{3}(x)} + \frac{1}{sin(x)}\right)}{dx}\\=&\frac{2*-3cos(x)cos^{2}(x)}{sin^{4}(x)} + \frac{2*-2cos(x)sin(x)}{sin^{3}(x)} + \frac{-cos(x)}{sin^{2}(x)}\\=&\frac{-6cos^{3}(x)}{sin^{4}(x)} - \frac{5cos(x)}{sin^{2}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!