本次共计算 2 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数\frac{14{e}^{(\frac{6x}{7})}(7sin(\frac{3x}{2}) + 4cos(\frac{3x}{2}))}{195} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{98}{195}{e}^{(\frac{6}{7}x)}sin(\frac{3}{2}x) + \frac{56}{195}{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x) + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{98}{195}{e}^{(\frac{6}{7}x)}sin(\frac{3}{2}x) + \frac{56}{195}{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x) + C\right)}{dx}\\=&\frac{98}{195}({e}^{(\frac{6}{7}x)}((\frac{6}{7})ln(e) + \frac{(\frac{6}{7}x)(0)}{(e)}))sin(\frac{3}{2}x) + \frac{98}{195}{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x)*\frac{3}{2} + \frac{56}{195}({e}^{(\frac{6}{7}x)}((\frac{6}{7})ln(e) + \frac{(\frac{6}{7}x)(0)}{(e)}))cos(\frac{3}{2}x) + \frac{56}{195}{e}^{(\frac{6}{7}x)}*-sin(\frac{3}{2}x)*\frac{3}{2} + 0\\=&{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数\frac{14{e}^{(\frac{6x}{7})}(4sin(\frac{3x}{2}) - 7cos(\frac{3x}{2}))}{195} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{56}{195}{e}^{(\frac{6}{7}x)}sin(\frac{3}{2}x) - \frac{98}{195}{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x) + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{56}{195}{e}^{(\frac{6}{7}x)}sin(\frac{3}{2}x) - \frac{98}{195}{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x) + C\right)}{dx}\\=&\frac{56}{195}({e}^{(\frac{6}{7}x)}((\frac{6}{7})ln(e) + \frac{(\frac{6}{7}x)(0)}{(e)}))sin(\frac{3}{2}x) + \frac{56}{195}{e}^{(\frac{6}{7}x)}cos(\frac{3}{2}x)*\frac{3}{2} - \frac{98}{195}({e}^{(\frac{6}{7}x)}((\frac{6}{7})ln(e) + \frac{(\frac{6}{7}x)(0)}{(e)}))cos(\frac{3}{2}x) - \frac{98}{195}{e}^{(\frac{6}{7}x)}*-sin(\frac{3}{2}x)*\frac{3}{2} + 0\\=&{e}^{(\frac{6}{7}x)}sin(\frac{3}{2}x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!