本次共计算 2 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数\frac{a{e}^{(\frac{bx}{a})}(asin(x) + bcos(x))}{({a}^{2} + {b}^{2})} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{a^{2}{e}^{(\frac{bx}{a})}sin(x)}{(a^{2} + b^{2})} + \frac{ab{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{a^{2}{e}^{(\frac{bx}{a})}sin(x)}{(a^{2} + b^{2})} + \frac{ab{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} + C\right)}{dx}\\=&(\frac{-(0 + 0)}{(a^{2} + b^{2})^{2}})a^{2}{e}^{(\frac{bx}{a})}sin(x) + \frac{a^{2}({e}^{(\frac{bx}{a})}((\frac{b}{a})ln(e) + \frac{(\frac{bx}{a})(0)}{(e)}))sin(x)}{(a^{2} + b^{2})} + \frac{a^{2}{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} + (\frac{-(0 + 0)}{(a^{2} + b^{2})^{2}})ab{e}^{(\frac{bx}{a})}cos(x) + \frac{ab({e}^{(\frac{bx}{a})}((\frac{b}{a})ln(e) + \frac{(\frac{bx}{a})(0)}{(e)}))cos(x)}{(a^{2} + b^{2})} + \frac{ab{e}^{(\frac{bx}{a})}*-sin(x)}{(a^{2} + b^{2})} + 0\\=&\frac{a^{2}{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} + \frac{b^{2}{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数\frac{a{e}^{(\frac{bx}{a})}(bsin(x) - acos(x))}{({a}^{2} + {b}^{2})} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ab{e}^{(\frac{bx}{a})}sin(x)}{(a^{2} + b^{2})} - \frac{a^{2}{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ab{e}^{(\frac{bx}{a})}sin(x)}{(a^{2} + b^{2})} - \frac{a^{2}{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} + C\right)}{dx}\\=&(\frac{-(0 + 0)}{(a^{2} + b^{2})^{2}})ab{e}^{(\frac{bx}{a})}sin(x) + \frac{ab({e}^{(\frac{bx}{a})}((\frac{b}{a})ln(e) + \frac{(\frac{bx}{a})(0)}{(e)}))sin(x)}{(a^{2} + b^{2})} + \frac{ab{e}^{(\frac{bx}{a})}cos(x)}{(a^{2} + b^{2})} - (\frac{-(0 + 0)}{(a^{2} + b^{2})^{2}})a^{2}{e}^{(\frac{bx}{a})}cos(x) - \frac{a^{2}({e}^{(\frac{bx}{a})}((\frac{b}{a})ln(e) + \frac{(\frac{bx}{a})(0)}{(e)}))cos(x)}{(a^{2} + b^{2})} - \frac{a^{2}{e}^{(\frac{bx}{a})}*-sin(x)}{(a^{2} + b^{2})} + 0\\=&\frac{b^{2}{e}^{(\frac{bx}{a})}sin(x)}{(a^{2} + b^{2})} + \frac{a^{2}{e}^{(\frac{bx}{a})}sin(x)}{(a^{2} + b^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!