本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sin(x)}{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)}{x}\right)}{dx}\\=&\frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x}\\=&\frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x}\right)}{dx}\\=&\frac{--2sin(x)}{x^{3}} - \frac{cos(x)}{x^{2}} + \frac{-cos(x)}{x^{2}} + \frac{-sin(x)}{x}\\=&\frac{2sin(x)}{x^{3}} - \frac{2cos(x)}{x^{2}} - \frac{sin(x)}{x}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2sin(x)}{x^{3}} - \frac{2cos(x)}{x^{2}} - \frac{sin(x)}{x}\right)}{dx}\\=&\frac{2*-3sin(x)}{x^{4}} + \frac{2cos(x)}{x^{3}} - \frac{2*-2cos(x)}{x^{3}} - \frac{2*-sin(x)}{x^{2}} - \frac{-sin(x)}{x^{2}} - \frac{cos(x)}{x}\\=&\frac{-6sin(x)}{x^{4}} + \frac{6cos(x)}{x^{3}} + \frac{3sin(x)}{x^{2}} - \frac{cos(x)}{x}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6sin(x)}{x^{4}} + \frac{6cos(x)}{x^{3}} + \frac{3sin(x)}{x^{2}} - \frac{cos(x)}{x}\right)}{dx}\\=&\frac{-6*-4sin(x)}{x^{5}} - \frac{6cos(x)}{x^{4}} + \frac{6*-3cos(x)}{x^{4}} + \frac{6*-sin(x)}{x^{3}} + \frac{3*-2sin(x)}{x^{3}} + \frac{3cos(x)}{x^{2}} - \frac{-cos(x)}{x^{2}} - \frac{-sin(x)}{x}\\=&\frac{24sin(x)}{x^{5}} - \frac{24cos(x)}{x^{4}} - \frac{12sin(x)}{x^{3}} + \frac{4cos(x)}{x^{2}} + \frac{sin(x)}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!