本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(330{x}^{4} + 330{x}^{2} - 560{x}^{3} - 560x + 160)}{(14x - 4)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{330x^{4}}{(14x - 4)} + \frac{330x^{2}}{(14x - 4)} - \frac{560x^{3}}{(14x - 4)} - \frac{560x}{(14x - 4)} + \frac{160}{(14x - 4)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{330x^{4}}{(14x - 4)} + \frac{330x^{2}}{(14x - 4)} - \frac{560x^{3}}{(14x - 4)} - \frac{560x}{(14x - 4)} + \frac{160}{(14x - 4)}\right)}{dx}\\=&330(\frac{-(14 + 0)}{(14x - 4)^{2}})x^{4} + \frac{330*4x^{3}}{(14x - 4)} + 330(\frac{-(14 + 0)}{(14x - 4)^{2}})x^{2} + \frac{330*2x}{(14x - 4)} - 560(\frac{-(14 + 0)}{(14x - 4)^{2}})x^{3} - \frac{560*3x^{2}}{(14x - 4)} - 560(\frac{-(14 + 0)}{(14x - 4)^{2}})x - \frac{560}{(14x - 4)} + 160(\frac{-(14 + 0)}{(14x - 4)^{2}})\\=&\frac{-4620x^{4}}{(14x - 4)^{2}} + \frac{1320x^{3}}{(14x - 4)} - \frac{4620x^{2}}{(14x - 4)^{2}} + \frac{660x}{(14x - 4)} + \frac{7840x^{3}}{(14x - 4)^{2}} - \frac{1680x^{2}}{(14x - 4)} + \frac{7840x}{(14x - 4)^{2}} - \frac{2240}{(14x - 4)^{2}} - \frac{560}{(14x - 4)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!