本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{cos(x)}{(1 + sin(x))} - 2xsin(x)ln(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{cos(x)}{(sin(x) + 1)} - 2xln(x)sin(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cos(x)}{(sin(x) + 1)} - 2xln(x)sin(x)\right)}{dx}\\=&(\frac{-(cos(x) + 0)}{(sin(x) + 1)^{2}})cos(x) + \frac{-sin(x)}{(sin(x) + 1)} - 2ln(x)sin(x) - \frac{2xsin(x)}{(x)} - 2xln(x)cos(x)\\=&\frac{-cos^{2}(x)}{(sin(x) + 1)^{2}} - \frac{sin(x)}{(sin(x) + 1)} - 2ln(x)sin(x) - 2sin(x) - 2xln(x)cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!