本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arctan(\frac{(x + 1)}{(x - 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arctan(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})\right)}{dx}\\=&(\frac{((\frac{-(1 + 0)}{(x - 1)^{2}})x + \frac{1}{(x - 1)} + (\frac{-(1 + 0)}{(x - 1)^{2}}))}{(1 + (\frac{x}{(x - 1)} + \frac{1}{(x - 1)})^{2})})\\=&\frac{-x}{(x - 1)^{2}(\frac{x^{2}}{(x - 1)^{2}} + \frac{2x}{(x - 1)^{2}} + \frac{1}{(x - 1)^{2}} + 1)} - \frac{1}{(x - 1)^{2}(\frac{x^{2}}{(x - 1)^{2}} + \frac{2x}{(x - 1)^{2}} + \frac{1}{(x - 1)^{2}} + 1)} + \frac{1}{(x - 1)(\frac{x^{2}}{(x - 1)^{2}} + \frac{2x}{(x - 1)^{2}} + \frac{1}{(x - 1)^{2}} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!