本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(csc(x) - cot(x)) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(csc(x) - cot(x))\right)}{dx}\\=&\frac{(-csc(x)cot(x) - -csc^{2}(x))}{(csc(x) - cot(x))}\\=&\frac{-cot(x)csc(x)}{(csc(x) - cot(x))} + \frac{csc^{2}(x)}{(csc(x) - cot(x))}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-cot(x)csc(x)}{(csc(x) - cot(x))} + \frac{csc^{2}(x)}{(csc(x) - cot(x))}\right)}{dx}\\=&-(\frac{-(-csc(x)cot(x) - -csc^{2}(x))}{(csc(x) - cot(x))^{2}})cot(x)csc(x) - \frac{-csc^{2}(x)csc(x)}{(csc(x) - cot(x))} - \frac{cot(x)*-csc(x)cot(x)}{(csc(x) - cot(x))} + (\frac{-(-csc(x)cot(x) - -csc^{2}(x))}{(csc(x) - cot(x))^{2}})csc^{2}(x) + \frac{-2csc^{2}(x)cot(x)}{(csc(x) - cot(x))}\\=&\frac{-cot^{2}(x)csc^{2}(x)}{(csc(x) - cot(x))^{2}} + \frac{2cot(x)csc^{3}(x)}{(csc(x) - cot(x))^{2}} + \frac{csc^{3}(x)}{(csc(x) - cot(x))} + \frac{cot^{2}(x)csc(x)}{(csc(x) - cot(x))} - \frac{csc^{4}(x)}{(csc(x) - cot(x))^{2}} - \frac{2cot(x)csc^{2}(x)}{(csc(x) - cot(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!