本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(x + sqrt({x}^{2} + 1)) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x + sqrt(x^{2} + 1))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x + sqrt(x^{2} + 1))\right)}{dx}\\=&\frac{(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))}\\=&\frac{x}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(x + sqrt(x^{2} + 1))}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{x}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(x + sqrt(x^{2} + 1))}\right)}{dx}\\=&\frac{(\frac{-(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))^{2}})x}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{3}{2}}})x}{(x + sqrt(x^{2} + 1))} + \frac{1}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + (\frac{-(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))^{2}})\\=& - \frac{x^{2}}{(x + sqrt(x^{2} + 1))^{2}(x^{2} + 1)} - \frac{2x}{(x + sqrt(x^{2} + 1))^{2}(x^{2} + 1)^{\frac{1}{2}}} - \frac{x^{2}}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{(x + sqrt(x^{2} + 1))^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!