本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(2x - 1){e}^{x}}{(x - 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2x{e}^{x}}{(x - 1)} - \frac{{e}^{x}}{(x - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2x{e}^{x}}{(x - 1)} - \frac{{e}^{x}}{(x - 1)}\right)}{dx}\\=&2(\frac{-(1 + 0)}{(x - 1)^{2}})x{e}^{x} + \frac{2{e}^{x}}{(x - 1)} + \frac{2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x - 1)} - (\frac{-(1 + 0)}{(x - 1)^{2}}){e}^{x} - \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x - 1)}\\=&\frac{-2x{e}^{x}}{(x - 1)^{2}} + \frac{{e}^{x}}{(x - 1)} + \frac{{e}^{x}}{(x - 1)^{2}} + \frac{2x{e}^{x}}{(x - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!