本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arctan(x) - (\frac{x}{(1 + a{x}^{2})}) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arctan(x) - \frac{x}{(ax^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(x) - \frac{x}{(ax^{2} + 1)}\right)}{dx}\\=&(\frac{(1)}{(1 + (x)^{2})}) - (\frac{-(a*2x + 0)}{(ax^{2} + 1)^{2}})x - \frac{1}{(ax^{2} + 1)}\\=&\frac{2ax^{2}}{(ax^{2} + 1)^{2}} + \frac{1}{(x^{2} + 1)} - \frac{1}{(ax^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2ax^{2}}{(ax^{2} + 1)^{2}} + \frac{1}{(x^{2} + 1)} - \frac{1}{(ax^{2} + 1)}\right)}{dx}\\=&2(\frac{-2(a*2x + 0)}{(ax^{2} + 1)^{3}})ax^{2} + \frac{2a*2x}{(ax^{2} + 1)^{2}} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}}) - (\frac{-(a*2x + 0)}{(ax^{2} + 1)^{2}})\\=& - \frac{8a^{2}x^{3}}{(ax^{2} + 1)^{3}} + \frac{6ax}{(ax^{2} + 1)^{2}} - \frac{2x}{(x^{2} + 1)^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{8a^{2}x^{3}}{(ax^{2} + 1)^{3}} + \frac{6ax}{(ax^{2} + 1)^{2}} - \frac{2x}{(x^{2} + 1)^{2}}\right)}{dx}\\=& - 8(\frac{-3(a*2x + 0)}{(ax^{2} + 1)^{4}})a^{2}x^{3} - \frac{8a^{2}*3x^{2}}{(ax^{2} + 1)^{3}} + 6(\frac{-2(a*2x + 0)}{(ax^{2} + 1)^{3}})ax + \frac{6a}{(ax^{2} + 1)^{2}} - 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x - \frac{2}{(x^{2} + 1)^{2}}\\=&\frac{48a^{3}x^{4}}{(ax^{2} + 1)^{4}} - \frac{48a^{2}x^{2}}{(ax^{2} + 1)^{3}} + \frac{6a}{(ax^{2} + 1)^{2}} + \frac{8x^{2}}{(x^{2} + 1)^{3}} - \frac{2}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!