本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{1}{(1 + (\frac{1}{3}){x}^{2} + (\frac{1}{4}){x}^{3})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)}\right)}{dx}\\=&(\frac{-(\frac{1}{3}*2x + \frac{1}{4}*3x^{2} + 0)}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}})\\=&\frac{-2x}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} - \frac{3x^{2}}{4(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2x}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} - \frac{3x^{2}}{4(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\right)}{dx}\\=&\frac{-2(\frac{-2(\frac{1}{3}*2x + \frac{1}{4}*3x^{2} + 0)}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}})x}{3} - \frac{2}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} - \frac{3(\frac{-2(\frac{1}{3}*2x + \frac{1}{4}*3x^{2} + 0)}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}})x^{2}}{4} - \frac{3*2x}{4(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\\=&\frac{8x^{2}}{9(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}} + \frac{2x^{3}}{(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}} - \frac{3x}{2(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}} + \frac{9x^{4}}{8(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{3}} - \frac{2}{3(\frac{1}{3}x^{2} + \frac{1}{4}x^{3} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!