本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}\right)}{dx}\\=&({{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}((0)ln({{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}) + \frac{(e)(({{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}((\frac{1}{(x)})ln({{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}) + \frac{(ln(x))(({{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}((sec^{2}(x)(1))ln({{x}^{sin(x)}}^{cos(x)}) + \frac{(tan(x))(({{x}^{sin(x)}}^{cos(x)}((-sin(x))ln({x}^{sin(x)}) + \frac{(cos(x))(({x}^{sin(x)}((cos(x))ln(x) + \frac{(sin(x))(1)}{(x)})))}{({x}^{sin(x)})})))}{({{x}^{sin(x)}}^{cos(x)})})))}{({{{x}^{sin(x)}}^{cos(x)}}^{tan(x)})})))}{({{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)})}))\\=&\frac{{{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}eln(x)sin(x)cos(x)tan(x)}{x} + {{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}eln({{x}^{sin(x)}}^{cos(x)})ln(x)sec^{2}(x) - {{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}eln({x}^{sin(x)})ln(x)sin(x)tan(x) + {{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}eln^{2}(x)cos^{2}(x)tan(x) + \frac{{{{{{x}^{sin(x)}}^{cos(x)}}^{tan(x)}}^{ln(x)}}^{e}eln({{{x}^{sin(x)}}^{cos(x)}}^{tan(x)})}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!