本次共计算 1 个题目:每一题对 s 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(m{u}^{2}r)}{(as({(R + \frac{r}{s})}^{2} + {(X + x)}^{2}))} 关于 s 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{mu^{2}r}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{mu^{2}r}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)}\right)}{ds}\\=&(\frac{-(aR^{2} + 0 + \frac{r^{2}a*-1}{s^{2}} + aX^{2} + 2aXx + ax^{2})}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}})mu^{2}r + 0\\=&\frac{-mu^{2}raR^{2}}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}} + \frac{mu^{2}r^{3}a}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}s^{2}} - \frac{2mu^{2}raXx}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}} - \frac{mu^{2}raX^{2}}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}} - \frac{mu^{2}rax^{2}}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!