本次共计算 1 个题目:每一题对 s 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(m{u}^{2}r)}{(o(s({R}^{2} + {r}^{2} + {X}^{2} + 2Xx + {x}^{2}) + 2Rr))} 关于 s 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{mu^{2}r}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{mu^{2}r}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)}\right)}{ds}\\=&(\frac{-(oR^{2} + r^{2}o + oX^{2} + 2oXx + ox^{2} + 0)}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}})mu^{2}r + 0\\=&\frac{-mu^{2}roR^{2}}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{2mu^{2}roXx}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{mu^{2}roX^{2}}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{mu^{2}rox^{2}}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{mu^{2}r^{3}o}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!