本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x - 2)arcsin(\frac{(x - 2)}{2}) + sqrt(4x - {x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xarcsin(\frac{1}{2}x - 1) - 2arcsin(\frac{1}{2}x - 1) + sqrt(4x - x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xarcsin(\frac{1}{2}x - 1) - 2arcsin(\frac{1}{2}x - 1) + sqrt(4x - x^{2})\right)}{dx}\\=&arcsin(\frac{1}{2}x - 1) + x(\frac{(\frac{1}{2} + 0)}{((1 - (\frac{1}{2}x - 1)^{2})^{\frac{1}{2}})}) - 2(\frac{(\frac{1}{2} + 0)}{((1 - (\frac{1}{2}x - 1)^{2})^{\frac{1}{2}})}) + \frac{(4 - 2x)*\frac{1}{2}}{(4x - x^{2})^{\frac{1}{2}}}\\=&arcsin(\frac{1}{2}x - 1) + \frac{x}{2(\frac{-1}{4}x^{2} + x)^{\frac{1}{2}}} - \frac{x}{(4x - x^{2})^{\frac{1}{2}}} + \frac{2}{(4x - x^{2})^{\frac{1}{2}}} - \frac{1}{(\frac{-1}{4}x^{2} + x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!