本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(2x - 4)arcsin(\frac{sqrt(x)}{2}) + sqrt(x)sqrt(4 - x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2xarcsin(\frac{1}{2}sqrt(x)) - 4arcsin(\frac{1}{2}sqrt(x)) + sqrt(x)sqrt(-x + 4)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2xarcsin(\frac{1}{2}sqrt(x)) - 4arcsin(\frac{1}{2}sqrt(x)) + sqrt(x)sqrt(-x + 4)\right)}{dx}\\=&2arcsin(\frac{1}{2}sqrt(x)) + 2x(\frac{(\frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}})}{((1 - (\frac{1}{2}sqrt(x))^{2})^{\frac{1}{2}})}) - 4(\frac{(\frac{\frac{1}{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}})}{((1 - (\frac{1}{2}sqrt(x))^{2})^{\frac{1}{2}})}) + \frac{\frac{1}{2}sqrt(-x + 4)}{(x)^{\frac{1}{2}}} + \frac{sqrt(x)(-1 + 0)*\frac{1}{2}}{(-x + 4)^{\frac{1}{2}}}\\=&2arcsin(\frac{1}{2}sqrt(x)) + \frac{x^{\frac{1}{2}}}{2(\frac{-1}{4}sqrt(x)^{2} + 1)^{\frac{1}{2}}} - \frac{1}{(\frac{-1}{4}sqrt(x)^{2} + 1)^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{sqrt(-x + 4)}{2x^{\frac{1}{2}}} - \frac{sqrt(x)}{2(-x + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!