本次共计算 1 个题目:每一题对 a 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(a) + \frac{ln(\frac{(sqrt(2sqrt(3) + 1) - a)}{(sqrt(2sqrt(3) + 1) + a)})}{(2sqrt(2sqrt(3) + 1))} 关于 a 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}ln(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})}{sqrt(2sqrt(3) + 1)} + ln(a)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}ln(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})}{sqrt(2sqrt(3) + 1)} + ln(a)\right)}{da}\\=&\frac{\frac{1}{2}((\frac{-(\frac{(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0)*\frac{1}{2}}{(2sqrt(3) + 1)^{\frac{1}{2}}} + 1)}{(sqrt(2sqrt(3) + 1) + a)^{2}})sqrt(2sqrt(3) + 1) + \frac{(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0)*\frac{1}{2}}{(sqrt(2sqrt(3) + 1) + a)(2sqrt(3) + 1)^{\frac{1}{2}}} - (\frac{-(\frac{(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0)*\frac{1}{2}}{(2sqrt(3) + 1)^{\frac{1}{2}}} + 1)}{(sqrt(2sqrt(3) + 1) + a)^{2}})a - \frac{1}{(sqrt(2sqrt(3) + 1) + a)})}{(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})sqrt(2sqrt(3) + 1)} + \frac{\frac{1}{2}ln(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})*-(2*0*\frac{1}{2}*3^{\frac{1}{2}} + 0)*\frac{1}{2}}{(2sqrt(3) + 1)(2sqrt(3) + 1)^{\frac{1}{2}}} + \frac{1}{(a)}\\=&\frac{a}{2(sqrt(2sqrt(3) + 1) + a)^{2}(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})sqrt(2sqrt(3) + 1)} - \frac{1}{2(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})(sqrt(2sqrt(3) + 1) + a)sqrt(2sqrt(3) + 1)} - \frac{1}{2(sqrt(2sqrt(3) + 1) + a)^{2}(\frac{sqrt(2sqrt(3) + 1)}{(sqrt(2sqrt(3) + 1) + a)} - \frac{a}{(sqrt(2sqrt(3) + 1) + a)})} + \frac{1}{a}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!