本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{x}^{9}}{3024} - \frac{{x}^{7}}{210} + \frac{{x}^{3}ln(x)}{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}x^{3}ln(x) - \frac{1}{210}x^{7} + \frac{1}{3024}x^{9}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}x^{3}ln(x) - \frac{1}{210}x^{7} + \frac{1}{3024}x^{9}\right)}{dx}\\=&\frac{1}{2}*3x^{2}ln(x) + \frac{\frac{1}{2}x^{3}}{(x)} - \frac{1}{210}*7x^{6} + \frac{1}{3024}*9x^{8}\\=&\frac{3x^{2}ln(x)}{2} + \frac{x^{2}}{2} - \frac{x^{6}}{30} + \frac{x^{8}}{336}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{3x^{2}ln(x)}{2} + \frac{x^{2}}{2} - \frac{x^{6}}{30} + \frac{x^{8}}{336}\right)}{dx}\\=&\frac{3*2xln(x)}{2} + \frac{3x^{2}}{2(x)} + \frac{2x}{2} - \frac{6x^{5}}{30} + \frac{8x^{7}}{336}\\=&3xln(x) + \frac{5x}{2} - \frac{x^{5}}{5} + \frac{x^{7}}{42}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 3xln(x) + \frac{5x}{2} - \frac{x^{5}}{5} + \frac{x^{7}}{42}\right)}{dx}\\=&3ln(x) + \frac{3x}{(x)} + \frac{5}{2} - \frac{5x^{4}}{5} + \frac{7x^{6}}{42}\\=&3ln(x) - x^{4} + \frac{x^{6}}{6} + \frac{11}{2}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 3ln(x) - x^{4} + \frac{x^{6}}{6} + \frac{11}{2}\right)}{dx}\\=&\frac{3}{(x)} - 4x^{3} + \frac{6x^{5}}{6} + 0\\=&\frac{3}{x} - 4x^{3} + x^{5}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!