本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(tan(x))}^{100} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan^{100}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan^{100}(x)\right)}{dx}\\=&100tan^{99}(x)sec^{2}(x)(1)\\=&100tan^{99}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 100tan^{99}(x)sec^{2}(x)\right)}{dx}\\=&100*99tan^{98}(x)sec^{2}(x)(1)sec^{2}(x) + 100tan^{99}(x)*2sec^{2}(x)tan(x)\\=&9900tan^{98}(x)sec^{4}(x) + 200tan^{100}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 9900tan^{98}(x)sec^{4}(x) + 200tan^{100}(x)sec^{2}(x)\right)}{dx}\\=&9900*98tan^{97}(x)sec^{2}(x)(1)sec^{4}(x) + 9900tan^{98}(x)*4sec^{4}(x)tan(x) + 200*100tan^{99}(x)sec^{2}(x)(1)sec^{2}(x) + 200tan^{100}(x)*2sec^{2}(x)tan(x)\\=&970200tan^{97}(x)sec^{6}(x) + 59600tan^{99}(x)sec^{4}(x) + 400tan^{101}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 970200tan^{97}(x)sec^{6}(x) + 59600tan^{99}(x)sec^{4}(x) + 400tan^{101}(x)sec^{2}(x)\right)}{dx}\\=&970200*97tan^{96}(x)sec^{2}(x)(1)sec^{6}(x) + 970200tan^{97}(x)*6sec^{6}(x)tan(x) + 59600*99tan^{98}(x)sec^{2}(x)(1)sec^{4}(x) + 59600tan^{99}(x)*4sec^{4}(x)tan(x) + 400*101tan^{100}(x)sec^{2}(x)(1)sec^{2}(x) + 400tan^{101}(x)*2sec^{2}(x)tan(x)\\=&94109400tan^{96}(x)sec^{8}(x) + 11721600tan^{98}(x)sec^{6}(x) + 278800tan^{100}(x)sec^{4}(x) + 800tan^{102}(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!