本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(tan(x))}^{9} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan^{9}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan^{9}(x)\right)}{dx}\\=&9tan^{8}(x)sec^{2}(x)(1)\\=&9tan^{8}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 9tan^{8}(x)sec^{2}(x)\right)}{dx}\\=&9*8tan^{7}(x)sec^{2}(x)(1)sec^{2}(x) + 9tan^{8}(x)*2sec^{2}(x)tan(x)\\=&72tan^{7}(x)sec^{4}(x) + 18tan^{9}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 72tan^{7}(x)sec^{4}(x) + 18tan^{9}(x)sec^{2}(x)\right)}{dx}\\=&72*7tan^{6}(x)sec^{2}(x)(1)sec^{4}(x) + 72tan^{7}(x)*4sec^{4}(x)tan(x) + 18*9tan^{8}(x)sec^{2}(x)(1)sec^{2}(x) + 18tan^{9}(x)*2sec^{2}(x)tan(x)\\=&504tan^{6}(x)sec^{6}(x) + 450tan^{8}(x)sec^{4}(x) + 36tan^{10}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 504tan^{6}(x)sec^{6}(x) + 450tan^{8}(x)sec^{4}(x) + 36tan^{10}(x)sec^{2}(x)\right)}{dx}\\=&504*6tan^{5}(x)sec^{2}(x)(1)sec^{6}(x) + 504tan^{6}(x)*6sec^{6}(x)tan(x) + 450*8tan^{7}(x)sec^{2}(x)(1)sec^{4}(x) + 450tan^{8}(x)*4sec^{4}(x)tan(x) + 36*10tan^{9}(x)sec^{2}(x)(1)sec^{2}(x) + 36tan^{10}(x)*2sec^{2}(x)tan(x)\\=&3024tan^{5}(x)sec^{8}(x) + 6624tan^{7}(x)sec^{6}(x) + 2160tan^{9}(x)sec^{4}(x) + 72tan^{11}(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!