本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{8} - \frac{sin(x){cos(x)}^{3}}{8} + \frac{{sin(x)}^{3}cos(x)}{8} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{8}x - \frac{1}{8}sin(x)cos^{3}(x) + \frac{1}{8}sin^{3}(x)cos(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{8}x - \frac{1}{8}sin(x)cos^{3}(x) + \frac{1}{8}sin^{3}(x)cos(x)\right)}{dx}\\=&\frac{1}{8} - \frac{1}{8}cos(x)cos^{3}(x) - \frac{1}{8}sin(x)*-3cos^{2}(x)sin(x) + \frac{1}{8}*3sin^{2}(x)cos(x)cos(x) + \frac{1}{8}sin^{3}(x)*-sin(x)\\=& - \frac{cos^{4}(x)}{8} + \frac{3sin^{2}(x)cos^{2}(x)}{4} - \frac{sin^{4}(x)}{8} + \frac{1}{8}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!