本次共计算 1 个题目:每一题对 x 求 5 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - x + {x}^{2})}{(1 + x + {x}^{2})} 关于 x 的 5 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{x}{(x + x^{2} + 1)} + \frac{x^{2}}{(x + x^{2} + 1)} + \frac{1}{(x + x^{2} + 1)}\\\\ &\color{blue}{函数的 5 阶导数:} \\=&\frac{-3840x^{7}}{(x + x^{2} + 1)^{6}} - \frac{3840x^{5}}{(x + x^{2} + 1)^{6}} + \frac{7680x^{5}}{(x + x^{2} + 1)^{5}} - \frac{4800x^{4}}{(x + x^{2} + 1)^{6}} - \frac{5760x^{6}}{(x + x^{2} + 1)^{6}} + \frac{2880x^{3}}{(x + x^{2} + 1)^{5}} - \frac{4560x^{3}}{(x + x^{2} + 1)^{4}} - \frac{6000x^{3}}{(x + x^{2} + 1)^{6}} - \frac{3720x^{2}}{(x + x^{2} + 1)^{6}} + \frac{2400x^{2}}{(x + x^{2} + 1)^{5}} + \frac{7680x^{4}}{(x + x^{2} + 1)^{5}} - \frac{360x}{(x + x^{2} + 1)^{4}} - \frac{2520x^{2}}{(x + x^{2} + 1)^{4}} + \frac{720x}{(x + x^{2} + 1)^{3}} + \frac{1680x}{(x + x^{2} + 1)^{5}} - \frac{1080x}{(x + x^{2} + 1)^{6}} - \frac{120}{(x + x^{2} + 1)^{4}} + \frac{360}{(x + x^{2} + 1)^{5}} + \frac{120}{(x + x^{2} + 1)^{3}} - \frac{120}{(x + x^{2} + 1)^{6}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!