本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln(x) + {x}^{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {x}^{x}ln(x) + {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{{x}^{x}}{(x)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + \frac{{x}^{x}}{x} + {x}^{x}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + \frac{{x}^{x}}{x} + {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln^{2}(x) + \frac{{x}^{x}*2ln(x)}{(x)} + 2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{2{x}^{x}}{(x)} + \frac{-{x}^{x}}{x^{2}} + \frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{x} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln^{3}(x) + 3{x}^{x}ln^{2}(x) + \frac{3{x}^{x}ln(x)}{x} + 3{x}^{x}ln(x) + \frac{3{x}^{x}}{x} - \frac{{x}^{x}}{x^{2}} + {x}^{x}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {x}^{x}ln^{3}(x) + 3{x}^{x}ln^{2}(x) + \frac{3{x}^{x}ln(x)}{x} + 3{x}^{x}ln(x) + \frac{3{x}^{x}}{x} - \frac{{x}^{x}}{x^{2}} + {x}^{x}\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln^{3}(x) + \frac{{x}^{x}*3ln^{2}(x)}{(x)} + 3({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln^{2}(x) + \frac{3{x}^{x}*2ln(x)}{(x)} + \frac{3*-{x}^{x}ln(x)}{x^{2}} + \frac{3({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x)}{x} + \frac{3{x}^{x}}{x(x)} + 3({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{3{x}^{x}}{(x)} + \frac{3*-{x}^{x}}{x^{2}} + \frac{3({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{x} - \frac{-2{x}^{x}}{x^{3}} - \frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{x^{2}} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&{x}^{x}ln^{4}(x) + 4{x}^{x}ln^{3}(x) + \frac{6{x}^{x}ln^{2}(x)}{x} + 6{x}^{x}ln^{2}(x) + \frac{12{x}^{x}ln(x)}{x} - \frac{4{x}^{x}ln(x)}{x^{2}} + 4{x}^{x}ln(x) + \frac{6{x}^{x}}{x} + \frac{2{x}^{x}}{x^{3}} - \frac{{x}^{x}}{x^{2}} + {x}^{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!