本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数10cos(x) - \frac{10sin(x)(10cos(x) + sqrt(100{(cos(x))}^{2} - 240 - 200sin(x)))}{10} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 10cos(x) - 10sin(x)cos(x) - sin(x)sqrt(100cos^{2}(x) - 200sin(x) - 240)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 10cos(x) - 10sin(x)cos(x) - sin(x)sqrt(100cos^{2}(x) - 200sin(x) - 240)\right)}{dx}\\=&10*-sin(x) - 10cos(x)cos(x) - 10sin(x)*-sin(x) - cos(x)sqrt(100cos^{2}(x) - 200sin(x) - 240) - \frac{sin(x)(100*-2cos(x)sin(x) - 200cos(x) + 0)*\frac{1}{2}}{(100cos^{2}(x) - 200sin(x) - 240)^{\frac{1}{2}}}\\=&10sin^{2}(x) - cos(x)sqrt(100cos^{2}(x) - 200sin(x) - 240) - 10sin(x) - 10cos^{2}(x) + \frac{100sin^{2}(x)cos(x)}{(100cos^{2}(x) - 200sin(x) - 240)^{\frac{1}{2}}} + \frac{100sin(x)cos(x)}{(100cos^{2}(x) - 200sin(x) - 240)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!