本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(\frac{1}{x}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(\frac{1}{x})\right)}{dx}\\=&\frac{cos(\frac{1}{x})*-1}{x^{2}}\\=&\frac{-cos(\frac{1}{x})}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-cos(\frac{1}{x})}{x^{2}}\right)}{dx}\\=&\frac{--2cos(\frac{1}{x})}{x^{3}} - \frac{-sin(\frac{1}{x})*-1}{x^{2}x^{2}}\\=&\frac{2cos(\frac{1}{x})}{x^{3}} - \frac{sin(\frac{1}{x})}{x^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2cos(\frac{1}{x})}{x^{3}} - \frac{sin(\frac{1}{x})}{x^{4}}\right)}{dx}\\=&\frac{2*-3cos(\frac{1}{x})}{x^{4}} + \frac{2*-sin(\frac{1}{x})*-1}{x^{3}x^{2}} - \frac{-4sin(\frac{1}{x})}{x^{5}} - \frac{cos(\frac{1}{x})*-1}{x^{4}x^{2}}\\=&\frac{-6cos(\frac{1}{x})}{x^{4}} + \frac{6sin(\frac{1}{x})}{x^{5}} + \frac{cos(\frac{1}{x})}{x^{6}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6cos(\frac{1}{x})}{x^{4}} + \frac{6sin(\frac{1}{x})}{x^{5}} + \frac{cos(\frac{1}{x})}{x^{6}}\right)}{dx}\\=&\frac{-6*-4cos(\frac{1}{x})}{x^{5}} - \frac{6*-sin(\frac{1}{x})*-1}{x^{4}x^{2}} + \frac{6*-5sin(\frac{1}{x})}{x^{6}} + \frac{6cos(\frac{1}{x})*-1}{x^{5}x^{2}} + \frac{-6cos(\frac{1}{x})}{x^{7}} + \frac{-sin(\frac{1}{x})*-1}{x^{6}x^{2}}\\=&\frac{24cos(\frac{1}{x})}{x^{5}} - \frac{36sin(\frac{1}{x})}{x^{6}} - \frac{12cos(\frac{1}{x})}{x^{7}} + \frac{sin(\frac{1}{x})}{x^{8}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!