本次共计算 1 个题目:每一题对 rho 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{rhofri(xianzhuansu - V)sqrt(U{1}^{2} + {(xianzhuansu - V)}^{2})}{8} 关于 rho 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{8}r^{2}h^{2}ofi^{2}xa^{2}n^{2}zu^{2}ssqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2}) - \frac{1}{8}r^{2}hofiVsqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{8}r^{2}h^{2}ofi^{2}xa^{2}n^{2}zu^{2}ssqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2}) - \frac{1}{8}r^{2}hofiVsqrt(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})\right)}{drho}\\=&\frac{\frac{1}{8}r^{2}h^{2}ofi^{2}xa^{2}n^{2}zu^{2}s(0 + 0 + 0 + 0)*\frac{1}{2}}{(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})^{\frac{1}{2}}} - \frac{\frac{1}{8}r^{2}hofiV(0 + 0 + 0 + 0)*\frac{1}{2}}{(U - 2hixa^{2}n^{2}zu^{2}sV + h^{2}i^{2}x^{2}a^{4}n^{4}z^{2}u^{4}s^{2} + V^{2})^{\frac{1}{2}}}\\=& - \frac{0}{16}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!