本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(x - 3)}^{2}}{(4(x - 1))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(4x - 4)} - \frac{6x}{(4x - 4)} + \frac{9}{(4x - 4)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(4x - 4)} - \frac{6x}{(4x - 4)} + \frac{9}{(4x - 4)}\right)}{dx}\\=&(\frac{-(4 + 0)}{(4x - 4)^{2}})x^{2} + \frac{2x}{(4x - 4)} - 6(\frac{-(4 + 0)}{(4x - 4)^{2}})x - \frac{6}{(4x - 4)} + 9(\frac{-(4 + 0)}{(4x - 4)^{2}})\\=&\frac{-4x^{2}}{(4x - 4)^{2}} + \frac{2x}{(4x - 4)} + \frac{24x}{(4x - 4)^{2}} - \frac{36}{(4x - 4)^{2}} - \frac{6}{(4x - 4)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-4x^{2}}{(4x - 4)^{2}} + \frac{2x}{(4x - 4)} + \frac{24x}{(4x - 4)^{2}} - \frac{36}{(4x - 4)^{2}} - \frac{6}{(4x - 4)}\right)}{dx}\\=&-4(\frac{-2(4 + 0)}{(4x - 4)^{3}})x^{2} - \frac{4*2x}{(4x - 4)^{2}} + 2(\frac{-(4 + 0)}{(4x - 4)^{2}})x + \frac{2}{(4x - 4)} + 24(\frac{-2(4 + 0)}{(4x - 4)^{3}})x + \frac{24}{(4x - 4)^{2}} - 36(\frac{-2(4 + 0)}{(4x - 4)^{3}}) - 6(\frac{-(4 + 0)}{(4x - 4)^{2}})\\=&\frac{32x^{2}}{(4x - 4)^{3}} - \frac{16x}{(4x - 4)^{2}} - \frac{192x}{(4x - 4)^{3}} + \frac{288}{(4x - 4)^{3}} + \frac{48}{(4x - 4)^{2}} + \frac{2}{(4x - 4)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!