本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{\frac{1}{2}}^{x} + 1 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {\frac{1}{2}}^{x} + 1\right)}{dx}\\=&({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})})) + 0\\=&{\frac{1}{2}}^{x}ln(\frac{1}{2})\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {\frac{1}{2}}^{x}ln(\frac{1}{2})\right)}{dx}\\=&({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})}))ln(\frac{1}{2}) + \frac{{\frac{1}{2}}^{x}*0}{(\frac{1}{2})}\\=&{\frac{1}{2}}^{x}ln^{2}(\frac{1}{2})\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {\frac{1}{2}}^{x}ln^{2}(\frac{1}{2})\right)}{dx}\\=&({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})}))ln^{2}(\frac{1}{2}) + \frac{{\frac{1}{2}}^{x}*2ln(\frac{1}{2})*0}{(\frac{1}{2})}\\=&{\frac{1}{2}}^{x}ln^{3}(\frac{1}{2})\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {\frac{1}{2}}^{x}ln^{3}(\frac{1}{2})\right)}{dx}\\=&({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})}))ln^{3}(\frac{1}{2}) + \frac{{\frac{1}{2}}^{x}*3ln^{2}(\frac{1}{2})*0}{(\frac{1}{2})}\\=&{\frac{1}{2}}^{x}ln^{4}(\frac{1}{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!