本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(x - {2}^{\frac{1}{2}})}{(x + {2}^{\frac{1}{2}})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{x}{(x + 2^{\frac{1}{2}})} - \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{x}{(x + 2^{\frac{1}{2}})} - \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})})\right)}{dx}\\=&\frac{((\frac{-(1 + 0)}{(x + 2^{\frac{1}{2}})^{2}})x + \frac{1}{(x + 2^{\frac{1}{2}})} - 2^{\frac{1}{2}}(\frac{-(1 + 0)}{(x + 2^{\frac{1}{2}})^{2}}))}{(\frac{x}{(x + 2^{\frac{1}{2}})} - \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})})}\\=&\frac{-x}{(x + 2^{\frac{1}{2}})^{2}(\frac{x}{(x + 2^{\frac{1}{2}})} - \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})})} + \frac{1}{(\frac{x}{(x + 2^{\frac{1}{2}})} - \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})})(x + 2^{\frac{1}{2}})} + \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})^{2}(\frac{x}{(x + 2^{\frac{1}{2}})} - \frac{2^{\frac{1}{2}}}{(x + 2^{\frac{1}{2}})})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!