本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(x - {2}^{-1})}{(x + {2}^{-1})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{x}{(x + \frac{1}{2})} - \frac{\frac{1}{2}}{(x + \frac{1}{2})})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{x}{(x + \frac{1}{2})} - \frac{\frac{1}{2}}{(x + \frac{1}{2})})\right)}{dx}\\=&\frac{((\frac{-(1 + 0)}{(x + \frac{1}{2})^{2}})x + \frac{1}{(x + \frac{1}{2})} - \frac{1}{2}(\frac{-(1 + 0)}{(x + \frac{1}{2})^{2}}))}{(\frac{x}{(x + \frac{1}{2})} - \frac{\frac{1}{2}}{(x + \frac{1}{2})})}\\=&\frac{-x}{(x + \frac{1}{2})^{2}(\frac{x}{(x + \frac{1}{2})} - \frac{\frac{1}{2}}{(x + \frac{1}{2})})} + \frac{1}{2(x + \frac{1}{2})^{2}(\frac{x}{(x + \frac{1}{2})} - \frac{\frac{1}{2}}{(x + \frac{1}{2})})} + \frac{1}{(\frac{x}{(x + \frac{1}{2})} - \frac{\frac{1}{2}}{(x + \frac{1}{2})})(x + \frac{1}{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!