本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sqrt(x({x}^{2} + 8)(8 - x))}{(x + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sqrt(-x^{4} + 8x^{3} + 64x - 8x^{2})}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sqrt(-x^{4} + 8x^{3} + 64x - 8x^{2})}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})sqrt(-x^{4} + 8x^{3} + 64x - 8x^{2}) + \frac{(-4x^{3} + 8*3x^{2} + 64 - 8*2x)*\frac{1}{2}}{(x + 1)(-x^{4} + 8x^{3} + 64x - 8x^{2})^{\frac{1}{2}}}\\=&\frac{-sqrt(-x^{4} + 8x^{3} + 64x - 8x^{2})}{(x + 1)^{2}} - \frac{2x^{3}}{(x + 1)(-x^{4} + 8x^{3} + 64x - 8x^{2})^{\frac{1}{2}}} + \frac{12x^{2}}{(x + 1)(-x^{4} + 8x^{3} + 64x - 8x^{2})^{\frac{1}{2}}} - \frac{8x}{(x + 1)(-x^{4} + 8x^{3} + 64x - 8x^{2})^{\frac{1}{2}}} + \frac{32}{(x + 1)(-x^{4} + 8x^{3} + 64x - 8x^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!