本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sec(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sec(x)\right)}{dx}\\=&sec(x)tan(x)\\=&tan(x)sec(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( tan(x)sec(x)\right)}{dx}\\=&sec^{2}(x)(1)sec(x) + tan(x)sec(x)tan(x)\\=&sec^{3}(x) + tan^{2}(x)sec(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( sec^{3}(x) + tan^{2}(x)sec(x)\right)}{dx}\\=&3sec^{3}(x)tan(x) + 2tan(x)sec^{2}(x)(1)sec(x) + tan^{2}(x)sec(x)tan(x)\\=&5tan(x)sec^{3}(x) + tan^{3}(x)sec(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 5tan(x)sec^{3}(x) + tan^{3}(x)sec(x)\right)}{dx}\\=&5sec^{2}(x)(1)sec^{3}(x) + 5tan(x)*3sec^{3}(x)tan(x) + 3tan^{2}(x)sec^{2}(x)(1)sec(x) + tan^{3}(x)sec(x)tan(x)\\=&5sec^{5}(x) + 18tan^{2}(x)sec^{3}(x) + tan^{4}(x)sec(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!