本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2ln(x) + \frac{1}{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2ln(x) + \frac{1}{x}\right)}{dx}\\=&\frac{2}{(x)} + \frac{-1}{x^{2}}\\=&\frac{2}{x} - \frac{1}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2}{x} - \frac{1}{x^{2}}\right)}{dx}\\=&\frac{2*-1}{x^{2}} - \frac{-2}{x^{3}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2}{x^{2}} + \frac{2}{x^{3}}\right)}{dx}\\=&\frac{-2*-2}{x^{3}} + \frac{2*-3}{x^{4}}\\=&\frac{4}{x^{3}} - \frac{6}{x^{4}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{4}{x^{3}} - \frac{6}{x^{4}}\right)}{dx}\\=&\frac{4*-3}{x^{4}} - \frac{6*-4}{x^{5}}\\=&\frac{-12}{x^{4}} + \frac{24}{x^{5}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!