本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{tan(x)}{(1 + {x}^{2})} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{tan(x)}{(x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{tan(x)}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})tan(x) + \frac{sec^{2}(x)(1)}{(x^{2} + 1)}\\=&\frac{-2xtan(x)}{(x^{2} + 1)^{2}} + \frac{sec^{2}(x)}{(x^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2xtan(x)}{(x^{2} + 1)^{2}} + \frac{sec^{2}(x)}{(x^{2} + 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xtan(x) - \frac{2tan(x)}{(x^{2} + 1)^{2}} - \frac{2xsec^{2}(x)(1)}{(x^{2} + 1)^{2}} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})sec^{2}(x) + \frac{2sec^{2}(x)tan(x)}{(x^{2} + 1)}\\=&\frac{8x^{2}tan(x)}{(x^{2} + 1)^{3}} + \frac{2tan(x)sec^{2}(x)}{(x^{2} + 1)} - \frac{4xsec^{2}(x)}{(x^{2} + 1)^{2}} - \frac{2tan(x)}{(x^{2} + 1)^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{8x^{2}tan(x)}{(x^{2} + 1)^{3}} + \frac{2tan(x)sec^{2}(x)}{(x^{2} + 1)} - \frac{4xsec^{2}(x)}{(x^{2} + 1)^{2}} - \frac{2tan(x)}{(x^{2} + 1)^{2}}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2}tan(x) + \frac{8*2xtan(x)}{(x^{2} + 1)^{3}} + \frac{8x^{2}sec^{2}(x)(1)}{(x^{2} + 1)^{3}} + 2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})tan(x)sec^{2}(x) + \frac{2sec^{2}(x)(1)sec^{2}(x)}{(x^{2} + 1)} + \frac{2tan(x)*2sec^{2}(x)tan(x)}{(x^{2} + 1)} - 4(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xsec^{2}(x) - \frac{4sec^{2}(x)}{(x^{2} + 1)^{2}} - \frac{4x*2sec^{2}(x)tan(x)}{(x^{2} + 1)^{2}} - 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})tan(x) - \frac{2sec^{2}(x)(1)}{(x^{2} + 1)^{2}}\\=&\frac{-12xtan(x)sec^{2}(x)}{(x^{2} + 1)^{2}} + \frac{24xtan(x)}{(x^{2} + 1)^{3}} + \frac{24x^{2}sec^{2}(x)}{(x^{2} + 1)^{3}} - \frac{48x^{3}tan(x)}{(x^{2} + 1)^{4}} + \frac{2sec^{4}(x)}{(x^{2} + 1)} + \frac{4tan^{2}(x)sec^{2}(x)}{(x^{2} + 1)} - \frac{6sec^{2}(x)}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!