本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}\right)}{dx}\\=&({x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}((cos({3}^{sqrt({{{5}^{x}}^{x}}^{x})})({3}^{sqrt({{{5}^{x}}^{x}}^{x})}((\frac{({{{5}^{x}}^{x}}^{x}((1)ln({{5}^{x}}^{x}) + \frac{(x)(({{5}^{x}}^{x}((1)ln({5}^{x}) + \frac{(x)(({5}^{x}((1)ln(5) + \frac{(x)(0)}{(5)})))}{({5}^{x})})))}{({{5}^{x}}^{x})}))*\frac{1}{2}}{({{{5}^{x}}^{x}}^{x})^{\frac{1}{2}}})ln(3) + \frac{(sqrt({{{5}^{x}}^{x}}^{x}))(0)}{(3)})))ln(x) + \frac{(sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})}))(1)}{(x)}))\\=&\frac{{{{5}^{x}}^{x}}^{(\frac{1}{2}x)}{3}^{sqrt({{{5}^{x}}^{x}}^{x})}{x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}ln({{5}^{x}}^{x})ln(x)ln(3)cos({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}{2} + \frac{x{{{5}^{x}}^{x}}^{(\frac{1}{2}x)}{3}^{sqrt({{{5}^{x}}^{x}}^{x})}{x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}ln({5}^{x})ln(x)ln(3)cos({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}{2} + \frac{x^{2}{{{5}^{x}}^{x}}^{(\frac{1}{2}x)}{3}^{sqrt({{{5}^{x}}^{x}}^{x})}{x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}ln(5)ln(x)ln(3)cos({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}{2} + \frac{{x}^{sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}sin({3}^{sqrt({{{5}^{x}}^{x}}^{x})})}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!