本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数cos(x) - \frac{(sin(x)cos(x) - asin(x)cos(bx))}{(sin(x) - asin(bx))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = cos(x) - \frac{sin(x)cos(x)}{(sin(x) - asin(bx))} + \frac{asin(x)cos(bx)}{(sin(x) - asin(bx))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cos(x) - \frac{sin(x)cos(x)}{(sin(x) - asin(bx))} + \frac{asin(x)cos(bx)}{(sin(x) - asin(bx))}\right)}{dx}\\=&-sin(x) - (\frac{-(cos(x) - acos(bx)b)}{(sin(x) - asin(bx))^{2}})sin(x)cos(x) - \frac{cos(x)cos(x)}{(sin(x) - asin(bx))} - \frac{sin(x)*-sin(x)}{(sin(x) - asin(bx))} + (\frac{-(cos(x) - acos(bx)b)}{(sin(x) - asin(bx))^{2}})asin(x)cos(bx) + \frac{acos(x)cos(bx)}{(sin(x) - asin(bx))} + \frac{asin(x)*-sin(bx)b}{(sin(x) - asin(bx))}\\=&-sin(x) + \frac{sin(x)cos^{2}(x)}{(sin(x) - asin(bx))^{2}} - \frac{absin(x)cos(bx)cos(x)}{(sin(x) - asin(bx))^{2}} - \frac{cos^{2}(x)}{(sin(x) - asin(bx))} + \frac{sin^{2}(x)}{(sin(x) - asin(bx))} - \frac{asin(x)cos(x)cos(bx)}{(sin(x) - asin(bx))^{2}} + \frac{a^{2}bsin(x)cos^{2}(bx)}{(sin(x) - asin(bx))^{2}} + \frac{acos(x)cos(bx)}{(sin(x) - asin(bx))} - \frac{absin(x)sin(bx)}{(sin(x) - asin(bx))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!