本次共计算 1 个题目:每一题对 t 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(1 - S{(Lt)}^{\frac{1}{2}}){(\frac{L}{t})}^{\frac{1}{2}}{(1 - {({(\frac{1}{(Lt)})}^{\frac{1}{2}} - S)}^{2})}^{\frac{1}{2}} 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}L^{\frac{1}{2}}}{t^{\frac{1}{2}}} - (\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}SL\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}L^{\frac{1}{2}}}{t^{\frac{1}{2}}} - (\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}SL\right)}{dt}\\=&\frac{(\frac{\frac{1}{2}(\frac{--1}{Lt^{2}} + \frac{2S*\frac{-1}{2}}{L^{\frac{1}{2}}t^{\frac{3}{2}}} + 0 + 0)}{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}})L^{\frac{1}{2}}}{t^{\frac{1}{2}}} + \frac{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}L^{\frac{1}{2}}*\frac{-1}{2}}{t^{\frac{3}{2}}} - (\frac{\frac{1}{2}(\frac{--1}{Lt^{2}} + \frac{2S*\frac{-1}{2}}{L^{\frac{1}{2}}t^{\frac{3}{2}}} + 0 + 0)}{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}})SL + 0\\=&\frac{1}{2(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}L^{\frac{1}{2}}t^{\frac{5}{2}}} - \frac{S}{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}t^{2}} - \frac{(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}L^{\frac{1}{2}}}{2t^{\frac{3}{2}}} + \frac{S^{2}L^{\frac{1}{2}}}{2(\frac{-1}{Lt} + \frac{2S}{L^{\frac{1}{2}}t^{\frac{1}{2}}} - S^{2} + 1)^{\frac{1}{2}}t^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!