本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(2 + {e}^{\frac{1}{x}})}{(1 + {e}^{(\frac{2}{x})})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{\frac{1}{x}}}{({e}^{(\frac{2}{x})} + 1)} + \frac{2}{({e}^{(\frac{2}{x})} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{\frac{1}{x}}}{({e}^{(\frac{2}{x})} + 1)} + \frac{2}{({e}^{(\frac{2}{x})} + 1)}\right)}{dx}\\=&(\frac{-(({e}^{(\frac{2}{x})}((\frac{2*-1}{x^{2}})ln(e) + \frac{(\frac{2}{x})(0)}{(e)})) + 0)}{({e}^{(\frac{2}{x})} + 1)^{2}}){e}^{\frac{1}{x}} + \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{({e}^{(\frac{2}{x})} + 1)} + 2(\frac{-(({e}^{(\frac{2}{x})}((\frac{2*-1}{x^{2}})ln(e) + \frac{(\frac{2}{x})(0)}{(e)})) + 0)}{({e}^{(\frac{2}{x})} + 1)^{2}})\\=&\frac{-{e}^{\frac{1}{x}}}{({e}^{(\frac{2}{x})} + 1)x^{2}} + \frac{2{e}^{(\frac{3}{x})}}{({e}^{(\frac{2}{x})} + 1)^{2}x^{2}} + \frac{4{e}^{(\frac{2}{x})}}{({e}^{(\frac{2}{x})} + 1)^{2}x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!