本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sin(\frac{1}{2}M(x - a))}{(Msin(\frac{1}{2}(x - a)))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(\frac{1}{2}Mx - \frac{1}{2}Ma)}{Msin(\frac{1}{2}x - \frac{1}{2}a)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(\frac{1}{2}Mx - \frac{1}{2}Ma)}{Msin(\frac{1}{2}x - \frac{1}{2}a)}\right)}{dx}\\=&\frac{cos(\frac{1}{2}Mx - \frac{1}{2}Ma)(\frac{1}{2}M + 0)}{Msin(\frac{1}{2}x - \frac{1}{2}a)} + \frac{sin(\frac{1}{2}Mx - \frac{1}{2}Ma)*-cos(\frac{1}{2}x - \frac{1}{2}a)(\frac{1}{2} + 0)}{Msin^{2}(\frac{1}{2}x - \frac{1}{2}a)}\\=&\frac{cos(\frac{1}{2}Mx - \frac{1}{2}Ma)}{2sin(\frac{1}{2}x - \frac{1}{2}a)} - \frac{sin(\frac{1}{2}Mx - \frac{1}{2}Ma)cos(\frac{1}{2}x - \frac{1}{2}a)}{2Msin^{2}(\frac{1}{2}x - \frac{1}{2}a)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!