本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(x - {x}^{2})}^{1}({x}^{2} + 1){\frac{1}{(x + 3)}}^{2}}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}x^{3}}{(x + 3)^{2}} - \frac{\frac{1}{2}x^{4}}{(x + 3)^{2}} + \frac{\frac{1}{2}x}{(x + 3)^{2}} - \frac{\frac{1}{2}x^{2}}{(x + 3)^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}x^{3}}{(x + 3)^{2}} - \frac{\frac{1}{2}x^{4}}{(x + 3)^{2}} + \frac{\frac{1}{2}x}{(x + 3)^{2}} - \frac{\frac{1}{2}x^{2}}{(x + 3)^{2}}\right)}{dx}\\=&\frac{1}{2}(\frac{-2(1 + 0)}{(x + 3)^{3}})x^{3} + \frac{\frac{1}{2}*3x^{2}}{(x + 3)^{2}} - \frac{1}{2}(\frac{-2(1 + 0)}{(x + 3)^{3}})x^{4} - \frac{\frac{1}{2}*4x^{3}}{(x + 3)^{2}} + \frac{1}{2}(\frac{-2(1 + 0)}{(x + 3)^{3}})x + \frac{\frac{1}{2}}{(x + 3)^{2}} - \frac{1}{2}(\frac{-2(1 + 0)}{(x + 3)^{3}})x^{2} - \frac{\frac{1}{2}*2x}{(x + 3)^{2}}\\=&\frac{-x^{3}}{(x + 3)^{3}} + \frac{3x^{2}}{2(x + 3)^{2}} + \frac{x^{4}}{(x + 3)^{3}} - \frac{2x^{3}}{(x + 3)^{2}} - \frac{x}{(x + 3)^{3}} + \frac{x^{2}}{(x + 3)^{3}} - \frac{x}{(x + 3)^{2}} + \frac{1}{2(x + 3)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!