本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(x - {x}^{2})}^{\frac{1}{2}}({x}^{2} + 1){\frac{1}{(x + 3)}}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(x - x^{2})^{\frac{1}{2}}x^{2}}{(x + 3)^{2}} + \frac{(x - x^{2})^{\frac{1}{2}}}{(x + 3)^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(x - x^{2})^{\frac{1}{2}}x^{2}}{(x + 3)^{2}} + \frac{(x - x^{2})^{\frac{1}{2}}}{(x + 3)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + 3)^{3}})(x - x^{2})^{\frac{1}{2}}x^{2} + \frac{(\frac{\frac{1}{2}(1 - 2x)}{(x - x^{2})^{\frac{1}{2}}})x^{2}}{(x + 3)^{2}} + \frac{(x - x^{2})^{\frac{1}{2}}*2x}{(x + 3)^{2}} + (\frac{-2(1 + 0)}{(x + 3)^{3}})(x - x^{2})^{\frac{1}{2}} + \frac{(\frac{\frac{1}{2}(1 - 2x)}{(x - x^{2})^{\frac{1}{2}}})}{(x + 3)^{2}}\\=&\frac{-2(x - x^{2})^{\frac{1}{2}}x^{2}}{(x + 3)^{3}} - \frac{x^{3}}{(x + 3)^{2}(x - x^{2})^{\frac{1}{2}}} + \frac{x^{2}}{2(x + 3)^{2}(x - x^{2})^{\frac{1}{2}}} + \frac{2(x - x^{2})^{\frac{1}{2}}x}{(x + 3)^{2}} - \frac{x}{(x + 3)^{2}(x - x^{2})^{\frac{1}{2}}} - \frac{2(x - x^{2})^{\frac{1}{2}}}{(x + 3)^{3}} + \frac{1}{2(x + 3)^{2}(x - x^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!