本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{{x}^{2}}{sin({x}^{(\frac{a}{cos(x)})})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{x^{2}}{sin({x}^{(\frac{a}{cos(x)})})})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{x^{2}}{sin({x}^{(\frac{a}{cos(x)})})})\right)}{dx}\\=&\frac{(\frac{2x}{sin({x}^{(\frac{a}{cos(x)})})} + \frac{x^{2}*-cos({x}^{(\frac{a}{cos(x)})})({x}^{(\frac{a}{cos(x)})}((\frac{asin(x)}{cos^{2}(x)})ln(x) + \frac{(\frac{a}{cos(x)})(1)}{(x)}))}{sin^{2}({x}^{(\frac{a}{cos(x)})})})*\frac{1}{2}}{(\frac{x^{2}}{sin({x}^{(\frac{a}{cos(x)})})})^{\frac{1}{2}}}\\=&\frac{1}{sin^{\frac{1}{2}}({x}^{(\frac{a}{cos(x)})})} - \frac{ax{x}^{(\frac{a}{cos(x)})}ln(x)sin(x)cos({x}^{(\frac{a}{cos(x)})})}{2sin^{\frac{3}{2}}({x}^{(\frac{a}{cos(x)})})cos^{2}(x)} - \frac{a{x}^{(\frac{a}{cos(x)})}cos({x}^{(\frac{a}{cos(x)})})}{2sin^{\frac{3}{2}}({x}^{(\frac{a}{cos(x)})})cos(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!