本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(ln(1 - x) + x){\frac{1}{x}}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(-x + 1)}{x^{2}} + \frac{1}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(-x + 1)}{x^{2}} + \frac{1}{x}\right)}{dx}\\=&\frac{-2ln(-x + 1)}{x^{3}} + \frac{(-1 + 0)}{x^{2}(-x + 1)} + \frac{-1}{x^{2}}\\=&\frac{-2ln(-x + 1)}{x^{3}} - \frac{1}{(-x + 1)x^{2}} - \frac{1}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2ln(-x + 1)}{x^{3}} - \frac{1}{(-x + 1)x^{2}} - \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-2*-3ln(-x + 1)}{x^{4}} - \frac{2(-1 + 0)}{x^{3}(-x + 1)} - \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{x^{2}} - \frac{-2}{(-x + 1)x^{3}} - \frac{-2}{x^{3}}\\=&\frac{6ln(-x + 1)}{x^{4}} + \frac{4}{(-x + 1)x^{3}} - \frac{1}{(-x + 1)^{2}x^{2}} + \frac{2}{x^{3}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{6ln(-x + 1)}{x^{4}} + \frac{4}{(-x + 1)x^{3}} - \frac{1}{(-x + 1)^{2}x^{2}} + \frac{2}{x^{3}}\right)}{dx}\\=&\frac{6*-4ln(-x + 1)}{x^{5}} + \frac{6(-1 + 0)}{x^{4}(-x + 1)} + \frac{4(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{x^{3}} + \frac{4*-3}{(-x + 1)x^{4}} - \frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{x^{2}} - \frac{-2}{(-x + 1)^{2}x^{3}} + \frac{2*-3}{x^{4}}\\=&\frac{-24ln(-x + 1)}{x^{5}} - \frac{18}{(-x + 1)x^{4}} + \frac{6}{(-x + 1)^{2}x^{3}} - \frac{2}{(-x + 1)^{3}x^{2}} - \frac{6}{x^{4}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-24ln(-x + 1)}{x^{5}} - \frac{18}{(-x + 1)x^{4}} + \frac{6}{(-x + 1)^{2}x^{3}} - \frac{2}{(-x + 1)^{3}x^{2}} - \frac{6}{x^{4}}\right)}{dx}\\=&\frac{-24*-5ln(-x + 1)}{x^{6}} - \frac{24(-1 + 0)}{x^{5}(-x + 1)} - \frac{18(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{x^{4}} - \frac{18*-4}{(-x + 1)x^{5}} + \frac{6(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{x^{3}} + \frac{6*-3}{(-x + 1)^{2}x^{4}} - \frac{2(\frac{-3(-1 + 0)}{(-x + 1)^{4}})}{x^{2}} - \frac{2*-2}{(-x + 1)^{3}x^{3}} - \frac{6*-4}{x^{5}}\\=&\frac{120ln(-x + 1)}{x^{6}} + \frac{96}{(-x + 1)x^{5}} - \frac{36}{(-x + 1)^{2}x^{4}} + \frac{16}{(-x + 1)^{3}x^{3}} - \frac{6}{(-x + 1)^{4}x^{2}} + \frac{24}{x^{5}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!