本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}\right)}{dx}\\=&a({{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}((e^{x + {1}^{(\frac{sqrt(9)}{x})}}(1 + ({1}^{(\frac{sqrt(9)}{x})}((\frac{-sqrt(9)}{x^{2}} + \frac{0*\frac{1}{2}*9^{\frac{1}{2}}}{x})ln(1) + \frac{(\frac{sqrt(9)}{x})(0)}{(1)}))))ln({x}^{sinh(x)}) + \frac{(e^{x + {1}^{(\frac{sqrt(9)}{x})}})(({x}^{sinh(x)}((cosh(x))ln(x) + \frac{(sinh(x))(1)}{(x)})))}{({x}^{sinh(x)})}))\\=&\frac{-a{1}^{(\frac{sqrt(9)}{x})}{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}ln(1)ln({x}^{sinh(x)})sqrt(9)}{x^{2}} + a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}ln(x)cosh(x) + a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}ln({x}^{sinh(x)}) + \frac{a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}sinh(x)}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!