本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln(sqrt({x}^{2} + 1) + x)}{({x}^{2} + 1)} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})ln(sqrt(x^{2} + 1) + x) + \frac{(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(x^{2} + 1)(sqrt(x^{2} + 1) + x)}\\=&\frac{-2xln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{2}} + \frac{x}{(x^{2} + 1)^{\frac{3}{2}}(sqrt(x^{2} + 1) + x)} + \frac{1}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2xln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{2}} + \frac{x}{(x^{2} + 1)^{\frac{3}{2}}(sqrt(x^{2} + 1) + x)} + \frac{1}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xln(sqrt(x^{2} + 1) + x) - \frac{2ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{2}} - \frac{2x(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(x^{2} + 1)^{2}(sqrt(x^{2} + 1) + x)} + \frac{(\frac{\frac{-3}{2}(2x + 0)}{(x^{2} + 1)^{\frac{5}{2}}})x}{(sqrt(x^{2} + 1) + x)} + \frac{(\frac{-(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{2}})x}{(x^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(x^{2} + 1)^{\frac{3}{2}}(sqrt(x^{2} + 1) + x)} + \frac{(\frac{-(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{2}})}{(x^{2} + 1)} + \frac{(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})}{(sqrt(x^{2} + 1) + x)}\\=&\frac{8x^{2}ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{3}} - \frac{2ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{2}} - \frac{5x^{2}}{(x^{2} + 1)^{\frac{5}{2}}(sqrt(x^{2} + 1) + x)} - \frac{4x}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{2}} - \frac{x^{2}}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{2}} - \frac{2x}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(x^{2} + 1)^{\frac{3}{2}}(sqrt(x^{2} + 1) + x)} - \frac{1}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{8x^{2}ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{3}} - \frac{2ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{2}} - \frac{5x^{2}}{(x^{2} + 1)^{\frac{5}{2}}(sqrt(x^{2} + 1) + x)} - \frac{4x}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{2}} - \frac{x^{2}}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{2}} - \frac{2x}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{\frac{3}{2}}} + \frac{1}{(x^{2} + 1)^{\frac{3}{2}}(sqrt(x^{2} + 1) + x)} - \frac{1}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)}\right)}{dx}\\=&8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2}ln(sqrt(x^{2} + 1) + x) + \frac{8*2xln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{3}} + \frac{8x^{2}(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(x^{2} + 1)^{3}(sqrt(x^{2} + 1) + x)} - 2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})ln(sqrt(x^{2} + 1) + x) - \frac{2(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(x^{2} + 1)^{2}(sqrt(x^{2} + 1) + x)} - \frac{5(\frac{\frac{-5}{2}(2x + 0)}{(x^{2} + 1)^{\frac{7}{2}}})x^{2}}{(sqrt(x^{2} + 1) + x)} - \frac{5(\frac{-(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{2}})x^{2}}{(x^{2} + 1)^{\frac{5}{2}}} - \frac{5*2x}{(x^{2} + 1)^{\frac{5}{2}}(sqrt(x^{2} + 1) + x)} - \frac{4(\frac{-(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{2}})x}{(x^{2} + 1)^{2}} - \frac{4(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x}{(sqrt(x^{2} + 1) + x)} - \frac{4}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{2}} - \frac{(\frac{-2(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{3}})x^{2}}{(x^{2} + 1)^{2}} - \frac{(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}}{(sqrt(x^{2} + 1) + x)^{2}} - \frac{2x}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{2}} - \frac{2(\frac{-2(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{3}})x}{(x^{2} + 1)^{\frac{3}{2}}} - \frac{2(\frac{\frac{-3}{2}(2x + 0)}{(x^{2} + 1)^{\frac{5}{2}}})x}{(sqrt(x^{2} + 1) + x)^{2}} - \frac{2}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{\frac{3}{2}}} + \frac{(\frac{\frac{-3}{2}(2x + 0)}{(x^{2} + 1)^{\frac{5}{2}}})}{(sqrt(x^{2} + 1) + x)} + \frac{(\frac{-(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{2}})}{(x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{-2(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{(sqrt(x^{2} + 1) + x)^{3}})}{(x^{2} + 1)} - \frac{(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})}{(sqrt(x^{2} + 1) + x)^{2}}\\=&\frac{-48x^{3}ln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{4}} + \frac{24xln(sqrt(x^{2} + 1) + x)}{(x^{2} + 1)^{3}} + \frac{33x^{3}}{(x^{2} + 1)^{\frac{7}{2}}(sqrt(x^{2} + 1) + x)} + \frac{24x^{2}}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{3}} - \frac{5x}{(x^{2} + 1)^{\frac{5}{2}}(sqrt(x^{2} + 1) + x)} + \frac{9x^{3}}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{3}} + \frac{15x^{2}}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{\frac{5}{2}}} - \frac{10x}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{\frac{5}{2}}} + \frac{5x}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{2}} + \frac{2x^{3}}{(sqrt(x^{2} + 1) + x)^{3}(x^{2} + 1)^{\frac{5}{2}}} + \frac{6x^{2}}{(sqrt(x^{2} + 1) + x)^{3}(x^{2} + 1)^{2}} - \frac{2x}{(x^{2} + 1)^{2}(sqrt(x^{2} + 1) + x)^{2}} + \frac{6x}{(sqrt(x^{2} + 1) + x)^{3}(x^{2} + 1)^{\frac{3}{2}}} - \frac{3}{(sqrt(x^{2} + 1) + x)^{2}(x^{2} + 1)^{\frac{3}{2}}} + \frac{2}{(sqrt(x^{2} + 1) + x)^{3}(x^{2} + 1)} - \frac{6}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!