本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln(sin(x) + cos(x))}{(sin(x) - cos(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(sin(x) + cos(x))}{(sin(x) - cos(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(sin(x) + cos(x))}{(sin(x) - cos(x))}\right)}{dx}\\=&(\frac{-(cos(x) - -sin(x))}{(sin(x) - cos(x))^{2}})ln(sin(x) + cos(x)) + \frac{(cos(x) + -sin(x))}{(sin(x) - cos(x))(sin(x) + cos(x))}\\=&\frac{-ln(sin(x) + cos(x))cos(x)}{(sin(x) - cos(x))^{2}} - \frac{ln(sin(x) + cos(x))sin(x)}{(sin(x) - cos(x))^{2}} + \frac{cos(x)}{(sin(x) - cos(x))(sin(x) + cos(x))} - \frac{sin(x)}{(sin(x) + cos(x))(sin(x) - cos(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!