本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数tan(3)cot(x)sec(3)(x)csc(5) - 30744x*2tan(3)tan(2)(x)cot(x)sec(x)csc(5) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xtan(3)cot(x)sec(3)csc(5) - 61488x^{2}tan(2)tan(3)cot(x)sec(x)csc(5)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xtan(3)cot(x)sec(3)csc(5) - 61488x^{2}tan(2)tan(3)cot(x)sec(x)csc(5)\right)}{dx}\\=&tan(3)cot(x)sec(3)csc(5) + xsec^{2}(3)(0)cot(x)sec(3)csc(5) + xtan(3)*-csc^{2}(x)sec(3)csc(5) + xtan(3)cot(x)sec(3)tan(3)*0csc(5) + xtan(3)cot(x)sec(3)*-csc(5)cot(5)*0 - 61488*2xtan(2)tan(3)cot(x)sec(x)csc(5) - 61488x^{2}sec^{2}(2)(0)tan(3)cot(x)sec(x)csc(5) - 61488x^{2}tan(2)sec^{2}(3)(0)cot(x)sec(x)csc(5) - 61488x^{2}tan(2)tan(3)*-csc^{2}(x)sec(x)csc(5) - 61488x^{2}tan(2)tan(3)cot(x)sec(x)tan(x)csc(5) - 61488x^{2}tan(2)tan(3)cot(x)sec(x)*-csc(5)cot(5)*0\\=&tan(3)cot(x)sec(3)csc(5) - xtan(3)sec(3)csc^{2}(x)csc(5) - 122976xtan(2)tan(3)cot(x)sec(x)csc(5) + 61488x^{2}tan(2)tan(3)sec(x)csc^{2}(x)csc(5) - 61488x^{2}tan(3)tan(x)tan(2)cot(x)sec(x)csc(5)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!