本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xsin(x)cos(x){e}^{x}ln(x)arcsin(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x{e}^{x}ln(x)sin(x)cos(x)arcsin(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{e}^{x}ln(x)sin(x)cos(x)arcsin(x)\right)}{dx}\\=&{e}^{x}ln(x)sin(x)cos(x)arcsin(x) + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x)sin(x)cos(x)arcsin(x) + \frac{x{e}^{x}sin(x)cos(x)arcsin(x)}{(x)} + x{e}^{x}ln(x)cos(x)cos(x)arcsin(x) + x{e}^{x}ln(x)sin(x)*-sin(x)arcsin(x) + x{e}^{x}ln(x)sin(x)cos(x)(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&{e}^{x}ln(x)sin(x)cos(x)arcsin(x) + x{e}^{x}ln(x)sin(x)cos(x)arcsin(x) + {e}^{x}sin(x)cos(x)arcsin(x) + x{e}^{x}ln(x)cos^{2}(x)arcsin(x) - x{e}^{x}ln(x)sin^{2}(x)arcsin(x) + \frac{x{e}^{x}ln(x)sin(x)cos(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!